Abràmoff, Michael D., Philip T. Lavin, Michele Birch, Nilay Shah, and
James C. Folk. 2018.
“Pivotal Trial of an Autonomous AI-Based
Diagnostic System for Detection of Diabetic Retinopathy in Primary Care
Offices.” Npj Digital Medicine 1: 39.
https://doi.org/10.1038/s41746-018-0040-6.
Adiasa, Ozi. n.d.
“Ozi Adiasa (@Oziadias) on x/Twitter.”
Twitter/X profile.
https://x.com/oziadias.
American Medical Informatics Association. 2024.
“Informatics
Workforce Development.” https://amia.org/.
Antoniadi, Anna Markella, Yuhan Du, Yasmine Guendouz, Lijing Wei,
Claudia Mazo, Brett A Becker, and Catherine Mooney. 2021.
“Current
Challenges and Future Opportunities for XAI in Machine Learning-Based
Clinical Decision Support Systems: A Systematic Review.”
Applied Sciences 11 (11): 5088.
https://doi.org/10.3390/app11115088.
Bailey, Zinzi D, Justin M Feldman, and Mary T Lewis. 2017.
“Structural Racism and Health Inequities in the USA: Evidence and
Interventions.” The Lancet 389 (10077): 1453–63.
https://doi.org/10.1016/S0140-6736(17)30569-X.
Barnett, G. Octo, James J. Cimino, Jon A. Hupp, and Edward P. Hoffer.
1987.
“DXplain: An Evolving Diagnostic Decision-Support
System.” JAMA 258 (1): 67–74.
https://doi.org/10.1001/jama.258.1.67.
Beam, Andrew L. n.d.
“Andrew Beam (@AndrewLBeam) on
x/Twitter.” Twitter/X profile.
https://x.com/AndrewLBeam.
Beam, Andrew L, and Isaac S Kohane. 2018.
“Big Data and Machine
Learning in Health Care.” JAMA 319 (13): 1317–18.
https://doi.org/10.1001/jama.2017.18391.
Beede, Emma, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren
Wilcox, Paisan Ruamviboonsuk, and Laura M Vardoulakis. 2020.
“A
Human-Centered Evaluation of a Deep Learning System Deployed in Clinics
for the Detection of Diabetic Retinopathy,” 1–12.
https://doi.org/10.1145/3313831.3376718.
Benjamens, Stan, Pranavsingh Dhunnoo, and Bertalan Meskó. 2020.
“The State of Artificial Intelligence-Based FDA-Approved Medical
Devices and Algorithms: An Online Database.” Npj Digital
Medicine 3 (1): 118.
https://doi.org/10.1038/s41746-020-0262-2.
Berkman, Nancy D, Stacey L Sheridan, Katrina E Donahue, David J Halpern,
and Karen Crotty. 2011.
“Low Health Literacy and Health Outcomes:
An Updated Systematic Review.” Annals of Internal
Medicine 155 (2): 97–107.
https://doi.org/10.7326/0003-4819-155-2-201107190-00005.
Breakstone, Joel, Mark Smith, Sam Wineburg, Amie Rapaport, Jill Carle,
Moriah Garland, and Anna Saavedra. 2021.
“Lateral Reading: College
Students Learn to Critically Evaluate Internet Sources in an Online
Course.” Harvard Kennedy School Misinformation Review 2
(1).
https://doi.org/10.37016/mr-2020-56.
Brownstein, John S, Clark C Freifeld, Ben Y Reis, and Kenneth D Mandl.
2008.
“Surveillance Sans Frontières: Internet-Based
Emerging Infectious Disease Intelligence and the HealthMap
Project.” PLoS Medicine 5 (7): e151.
https://doi.org/10.1371/journal.pmed.0050151.
Bureau of Labor Statistics, U.S. Department of Labor. 2023a.
“Occupational Outlook Handbook: Data Scientists.” U.S.
Bureau of Labor Statistics.
https://www.bls.gov/ooh/math/data-scientists.htm.
———. 2023b.
“Occupational Outlook Handbook: Health Information
Technologists and Medical Registrars.” U.S. Bureau of Labor
Statistics.
https://www.bls.gov/ooh/healthcare/health-information-technologists-and-medical-registrars.htm.
Centers for Disease Control and Prevention. 2023.
“Data
Modernization Initiative.” https://www.cdc.gov/surveillance/data-modernization/index.html.
Corbett, Kizzmekia S, Barbara Flynn, Katelyn E Foulds, Joseph R
Francica, Seyhan Boyoglu-Barnum, Anne P Werner, et al. 2020.
“SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen
Preparedness.” Nature 586 (7830): 567–71.
https://doi.org/10.1038/s41586-020-2622-0.
Covello, Vincent T. 2006. “Risk Communication and Message Mapping:
A New Tool for Communicating Effectively in Public Health Emergencies
and Disasters.” Journal of Emergency Management 4 (3):
25–40.
Cramer, Estee Y, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea
Brennen, Alvaro J Castro Rivadeneira, et al. 2022.
“Evaluation of
Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in
the United States.” Proceedings of the National Academy of
Sciences 119 (15): e2113561119.
https://doi.org/10.1073/pnas.2113561119.
Crevier, Daniel. 1993. AI: The Tumultuous History of the Search for
Artificial Intelligence. New York: Basic Books.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
“BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding.” In
Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 1:4171–86.
https://doi.org/10.18653/v1/N19-1423.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18.
https://doi.org/10.1038/nature21056.
European Parliament and Council. 2024.
“Regulation (EU) 2024/1689
of the European Parliament and of the Council on Laying down Harmonised
Rules on Artificial Intelligence (Artificial Intelligence Act).”
Official Journal of the European Union.
https://artificialintelligenceact.eu/.
European Union. 2022.
“Regulation (EU) 2022/2065 on a Single
Market for Digital Services (Digital Services Act).” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R2065.
Freifeld, Clark C, Kenneth D Mandl, Ben Y Reis, and John S Brownstein.
2008.
“HealthMap: Global Infectious Disease Monitoring Through
Automated Classification and Visualization of Internet Media
Reports.” Journal of the American Medical Informatics
Association 15 (2): 150–57.
https://doi.org/10.1197/jamia.M2544.
Freimuth, Vicki S, Donald Musa, Karen Hilyard, Sandra Crouse Quinn, and
Keri Kim. 2014.
“Trust During the Early Stages of the 2009 H1N1
Pandemic.” Journal of Health Communication 19 (3):
321–39.
https://doi.org/10.1080/10810730.2013.811323.
Fry, Erika. 2018.
“IBM’s Watson Was Supposed to Transform Health
Care. What Happened?” Fortune.
https://fortune.com/longform/ibm-watson-health-transformation-flop/.
Fuller, Aidan, Zhong Fan, Charles Day, and Chris Barlow. 2020.
“Digital Twin: Enabling Technologies, Challenges and Open
Research.” IEEE Access 8: 108952–71.
https://doi.org/10.1109/ACCESS.2020.2998358.
Gao, Catherine A, Frederick M Howard, Nina S Markov, Emma C Dyer, Sanjay
Ramesh, Yuan Luo, and Alexander T Pearson. 2023.
“Comparing
Scientific Abstracts Generated by ChatGPT to Real Abstracts with
Detectors and Blinded Human Reviewers.” Npj Digital
Medicine 6 (1): 75.
https://doi.org/10.1038/s41746-023-00819-6.
Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer,
Mark S. Smolinski, and Larry Brilliant. 2009.
“Detecting Influenza
Epidemics Using Search Engine Query Data.” Nature 457
(7232): 1012–14.
https://doi.org/10.1038/nature07634.
Grand View Research. 2023.
“Artificial Intelligence in Healthcare
Market Size, Share & Trends Analysis Report.” https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-healthcare-market.
Gulshan, Varun, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu,
Arunachalam Narayanaswamy, et al. 2016.
“Development and
Validation of a Deep Learning Algorithm for Detection of Diabetic
Retinopathy in Retinal Fundus Photographs.” JAMA 316
(22): 2402–10.
https://doi.org/10.1001/jama.2016.17216.
Haug, Peter J., and Erica L. Drazen. 2023.
“Medical Informatics:
Past, Present, Future.” International Journal of Medical
Informatics 84 (10): 726–32.
https://doi.org/10.1016/j.ijmedinf.2015.07.001.
Hernán, Miguel A, and James M Robins. 2020.
Causal Inference: What
If. Chapman & Hall/CRC.
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/.
Hernandez, Daniela, and Ted Greenwald. 2018.
“IBM Pitched Watson
as a Revolution in Cancer Care. It’s Nowhere Close.” The Wall
Street Journal.
https://www.wsj.com/articles/ibm-pitched-watson-as-a-revolution-in-cancer-care-its-nowhere-close-1533961147.
Hutwagner, Lori, William Thompson, G Matthew Seeman, and Tracee
Treadwell. 2003.
“The Bioterrorism Preparedness and Response Early
Aberration Reporting System (EARS).” Journal of Urban
Health 80 (Suppl 1): i89–96.
https://doi.org/10.1007/PL00022319.
Ioannidis, John PA. 2021.
“Infection Fatality Rate of COVID-19
Inferred from Seroprevalence Data.” Bulletin of the World
Health Organization 99 (1): 19–33F.
https://doi.org/10.2471/BLT.20.265892.
Jain, Aarushi, and Nikita Verma. 2022.
“India’s New IT Rules and
Platform Governance.” Internet Policy Review 11 (1):
1–20.
https://doi.org/10.14763/2022.1.1631.
Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, et al. 2021.
“Highly Accurate Protein
Structure Prediction with AlphaFold.” Nature 596 (7873):
583–89.
https://doi.org/10.1038/s41586-021-03819-2.
Kahn, Michael G, Tiffany J Callahan, Juliana Barnard, Alan E Bauck, Jeff
Brown, Bruce N Davidson, et al. 2016.
“A Harmonized Data Quality
Assessment Terminology and Framework for the Secondary Use of Electronic
Health Record Data.” eGEMs 4 (1): 1244.
https://doi.org/10.13063/2327-9214.1244.
Kaufman, Shachar, Saharon Rosset, and Claudia Perlich. 2012.
“Leakage in Data Mining: Formulation, Detection, and
Avoidance.” ACM Transactions on Knowledge Discovery from Data
(TKDD) 6 (4): 1–21.
https://doi.org/10.1145/2382577.2382579.
Kosseff, Jeff. 2019.
“The Twenty-Six Words That Created the
Internet.” https://doi.org/10.7591/9781501714412.
Krause, Jonathan, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi
Widner, Greg S Corrado, Lily Peng, and Dale R Webster. 2018.
“Grading of Diabetic Retinopathy Severity from Retinal Fundus
Images Using Deep Learning and Large-Scale Clinical Data.”
Ophthalmology 125 (8): 1237–44.
https://doi.org/10.1016/j.ophtha.2018.02.032.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural
Networks.” In Advances in Neural Information Processing
Systems, 25:1097–1105.
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.
“The Parable of Google Flu: Traps in Big Data Analysis.”
Science 343 (6176): 1203–5.
https://doi.org/10.1126/science.1248506.
Lewandowsky, Stephan, John Cook, Ullrich KH Ecker, Dolores Albarracín,
Naomi Kennett, Madalina Vlasceanu, Klaus Oberauer, et al. 2020.
“The Debunking Handbook 2020.” Databrary.
https://doi.org/10.17910/b7.1182.
Lewandowsky, Stephan, Ullrich KH Ecker, Colleen M Seifert, Norbert
Schwarz, and John Cook. 2012.
“Misinformation and Its Correction:
Continued Influence and Successful Debiasing.” Psychological
Science in the Public Interest 13 (3): 106–31.
https://doi.org/10.1177/1529100612451018.
Lindsay, Robert K., Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua
Lederberg. 1993.
“DENDRAL: A Case Study of the First Expert System
for Scientific Hypothesis Formation.” Artificial
Intelligence 61 (2): 209–61.
https://doi.org/10.1016/0004-3702(93)90068-M.
Lipsitch, Marc, David L Swerdlow, and Lyn Finelli. 2020.
“Defining
the Epidemiology of Covid-19—Studies Needed.” New England
Journal of Medicine 382 (13): 1194–96.
https://doi.org/10.1056/NEJMp2002125.
Little, Roderick JA, and Donald B Rubin. 2019.
Statistical Analysis
with Missing Data. 3rd ed. Hoboken, NJ: Wiley.
https://doi.org/10.1002/9781119482260.
Liu, Haotian, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023.
“Visual Instruction Tuning.” Advances in Neural
Information Processing Systems 36.
https://arxiv.org/abs/2304.08485.
Liu, Xiaoxuan, Livia Faes, Aditya U Kale, Siegfried K Wagner, Dun Jack
Fu, Alice Bruynseels, et al. 2019.
“A Comparison of Deep Learning
Performance Against Health-Care Professionals in Detecting Diseases from
Medical Imaging: A Systematic Review and Meta-Analysis.” The
Lancet Digital Health 1 (6): e271–97.
https://doi.org/10.1016/S2589-7500(19)30123-2.
Lohr, Steve. 2022.
“IBM Sells Watson Health Assets, Ending Era for
Business.” The New York Times.
https://www.nytimes.com/2022/01/21/technology/ibm-watson-health.html.
Loomba, Sahil, Alexandre de Figueiredo, Simon J Piatek, Kristen de
Graaf, and Heidi J Larson. 2021.
“Measuring the Impact of COVID-19
Vaccine Misinformation on Vaccination Intent in the UK and USA.”
Nature Human Behaviour 5 (3): 337–48.
https://doi.org/10.1038/s41562-021-01056-1.
Lundberg, Scott M, and Su-In Lee. 2017.
“A Unified Approach to
Interpreting Model Predictions.” Advances in Neural
Information Processing Systems 30.
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
Markus, Aniek F, Jan A Kors, and Peter R Rijnbeek. 2021.
“The Role
of Explainability in Creating Trustworthy Artificial Intelligence for
Health Care: A Comprehensive Survey of the Terminology, Design Choices,
and Evaluation Strategies.” Journal of Biomedical
Informatics 113: 103655.
https://doi.org/10.1016/j.jbi.2020.103655.
McCarthy, John, Marvin L. Minsky, Nathaniel Rochester, and Claude E.
Shannon. 2006.
“A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence, August 31, 1955.” AI
Magazine 27 (4): 12.
https://doi.org/10.1609/aimag.v27i4.1904.
McCoy, Liam G, Sai Nagaraj, Fernanda Morgado, Vinyas Harish, Sunit Das,
and Leo Anthony Celi. 2020.
“What Do Medical Students Actually
Need to Know about Artificial Intelligence?” Npj Digital
Medicine 3 (1): 86.
https://doi.org/10.1038/s41746-020-0294-7.
McGough, Sarah F, Michael A Johansson, Marc Lipsitch, and Nicolas A
Menzies. 2020.
“Nowcasting by Bayesian Smoothing: A Flexible,
Generalizable Model for Real-Time Epidemic Tracking.” PLoS
Computational Biology 16 (4): e1007735.
https://doi.org/10.1371/journal.pcbi.1007735.
Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
“Efficient Estimation of Word Representations in Vector
Space.” arXiv Preprint arXiv:1301.3781.
Miller, Randolph A., Harry E. Pople, and Jack D. Myers. 1982.
“INTERNIST-1, an Experimental Computer-Based Diagnostic Consultant
for General Internal Medicine.” New England Journal of
Medicine 307 (8): 468–76.
https://doi.org/10.1056/NEJM198208193070803.
Molnar, Christoph. 2024.
Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. 2nd ed.
https://christophm.github.io/interpretable-ml-book/.
Mukherjee, Siddhartha. 2021.
“What Happened When Google Health
Tried to Use AI to Predict Patient Outcomes.” The New
Yorker.
https://www.newyorker.com/magazine/2021/04/05/what-data-cant-do.
Ng, Andrew. n.d.
“Andrew Ng (@AndrewYNg) on x/Twitter.”
Twitter/X profile.
https://x.com/AndrewYNg.
Nori, Harsha, Nicholas King, Scott Mayer McKinney, Dean Carignan, and
Eric Horvitz. 2023. “Capabilities of GPT-4 on Medical Challenge
Problems.” arXiv Preprint arXiv:2303.13375.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019.
“Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53.
https://doi.org/10.1126/science.aax2342.
Olson, Donald R., Kevin J. Konty, Marc Paladini, Cécile Viboud, and Lone
Simonsen. 2013.
“Reassessing Google Flu Trends Data for Detection
of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study
at Three Geographic Scales.” PLoS Computational Biology
9 (10): e1003256.
https://doi.org/10.1371/journal.pcbi.1003256.
OpenAI. 2023. “GPT-4 Technical Report.” arXiv Preprint
arXiv:2303.08774.
Pearl, Judea. 2009.
“Causal Inference in Statistics: An
Overview.” Statistics Surveys 3: 96–146.
https://doi.org/10.1214/09-SS057.
Pierri, Francesco, Brea L Perry, Matthew R DeVerna, Kai-Cheng Yang,
Alessandro Flammini, Filippo Menczer, and John Bryden. 2022.
“Vaccination and Social Media: A Systematic Review.”
Journal of Medical Internet Research 24 (11): e38977.
https://doi.org/10.2196/38977.
Poplin, Ryan, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas
Colthurst, Alexander Ku, et al. 2018.
“A Universal SNP and
Small-Indel Variant Caller Using Deep Neural Networks.”
Nature Biotechnology 36 (10): 983–87.
https://doi.org/10.1038/nbt.4235.
Powles, Julia, and Hal Hodson. 2017.
“Google DeepMind and
Healthcare in an Age of Algorithms.” Health and
Technology 7 (4): 351–67.
https://doi.org/10.1007/s12553-017-0179-1.
Preskill, John. 2018.
“Quantum Computing in the NISQ Era and
Beyond.” Quantum 2: 79.
https://doi.org/10.22331/q-2018-08-06-79.
Rajkomar, Alvin, Jeffrey Dean, and Isaac Kohane. 2019.
“Machine
Learning in Medicine.” New England Journal of Medicine
380 (14): 1347–58.
https://doi.org/10.1056/NEJMra1814259.
Rajpurkar, Pranav, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel
Mehta, Tony Duan, et al. 2017. “CheXNet: Radiologist-Level
Pneumonia Detection on Chest x-Rays with Deep Learning.”
arXiv Preprint arXiv:1711.05225.
Reich, Nicholas G, Logan C Brooks, Spencer J Fox, Sasikiran Kandula,
Craig J McGowan, Evan Moore, et al. 2019.
“A Collaborative
Multiyear, Multimodel Assessment of Seasonal Influenza Forecasting in
the United States.” Proceedings of the National Academy of
Sciences 116 (8): 3146–54.
https://doi.org/10.1073/pnas.1812594116.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016.
“Why Should i Trust You? Explaining the Predictions of Any
Classifier.” In
Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1135–44.
https://doi.org/10.1145/2939672.2939778.
Roozenbeek, Jon, Sander van der Linden, Beth Goldberg, Steve Rathje, and
Stephan Lewandowsky. 2022.
“Psychological Inoculation Improves
Resilience Against Misinformation on Social Media.” Science
Advances 8 (34): eabo6254.
https://doi.org/10.1126/sciadv.abo6254.
Roozenbeek, Jon, Claudia R Schneider, Sarah Dryhurst, John Kerr,
Alexandra LJ Freeman, Gabriel Recchia, Anne Marthe Van Der Bles, and
Sander Van Der Linden. 2020.
“Susceptibility to Misinformation
about COVID-19 Around the World.” Royal Society Open
Science 7 (10): 201199.
https://doi.org/10.1098/rsos.201199.
Ross, Casey, and Ike Swetlitz. 2017.
“MD Anderson Benches IBM
Watson in Setback for Artificial Intelligence in Medicine.”
STAT News.
https://www.statnews.com/2017/02/19/md-anderson-benches-ibm-watson-in-setback-for-artificial-intelligence-in-medicine/.
———. 2018.
“IBM’s Watson Supercomputer Recommended ’Unsafe and
Incorrect’ Cancer Treatments, Internal Documents Show.” STAT
News.
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/.
Russell, Timothy W, Joel Hellewell, Christopher I Jarvis, Kevin Van
Zandvoort, Sam Abbott, Ruwan Ratnayake, et al. 2020.
“Using a
Delay-Adjusted Case Fatality Ratio to Estimate Under-Reporting.”
CMMID Repository.
https://doi.org/10.25561/77731.
Senior, Andrew W, Richard Evans, John Jumper, James Kirkpatrick, Laurent
Sifre, Tim Green, et al. 2020.
“Improved Protein Structure
Prediction Using Potentials from Deep Learning.” Nature
577 (7792): 706–10.
https://doi.org/10.1038/s41586-019-1923-7.
Shortliffe, Edward H., Randall Davis, Scott G. Axline, Bruce G.
Buchanan, Cordell C. Green, and Stanley N. Cohen. 1975.
“Computer-Based Consultations in Clinical Therapeutics:
Explanation and Rule Acquisition Capabilities of the MYCIN
System.” Computers and Biomedical Research 8 (4):
303–20.
https://doi.org/10.1016/0010-4809(75)90009-9.
Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, et al. 2016.
“Mastering the Game of Go
with Deep Neural Networks and Tree Search.” Nature 529
(7587): 484–89.
https://doi.org/10.1038/nature16961.
Singhal, Karan, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei,
Hyung Won Chung, et al. 2023. “Towards Expert-Level Medical
Question Answering with Large Language Models.” arXiv
Preprint arXiv:2305.09617.
Strickland, Eliza. 2019.
“How IBM Watson Overpromised and
Underdelivered on AI Health Care.” IEEE Spectrum.
https://spectrum.ieee.org/how-ibm-watson-overpromised-and-underdelivered-on-ai-health-care.
Swire, Briony, Adam J Berinsky, Stephan Lewandowsky, and Ullrich KH
Ecker. 2017.
“The Role of Familiarity in Correcting Inaccurate
Information.” Journal of Experimental Psychology: Learning,
Memory, and Cognition 43 (12): 1948–61.
https://doi.org/10.1037/xlm0000422.
Tan, Teng-Kee, and Kishore Mahbubani. 2021.
“Singapore’s
Protection from Online Falsehoods and Manipulation Act: A
Critique.” Asian Journal of Comparative Law 16 (1):
125–47.
https://doi.org/10.1017/asjcl.2021.4.
Thaker, Jagadish, and Shubhangi Ganchoudhuri. 2021.
“The Role of
Trust in COVID-19 Vaccine Hesitancy and Acceptance Among Black and
Hispanic Communities in the United States.” JMIR Public
Health and Surveillance 7 (7): e29851.
https://doi.org/10.2196/29851.
Topol, Eric. n.d.
“Eric Topol (@EricTopol) on x/Twitter.”
Twitter/X profile.
https://x.com/EricTopol.
Topol, Eric J. 2019.
“High-Performance Medicine: The Convergence
of Human and Artificial Intelligence.” Nature Medicine
25 (1): 44–56.
https://doi.org/10.1038/s41591-018-0300-7.
Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, et al. 2023.
“Llama 2: Open
Foundation and Fine-Tuned Chat Models.” arXiv Preprint
arXiv:2307.09288.
https://arxiv.org/abs/2307.09288.
Turing, A. M. 1950.
“Computing Machinery and Intelligence.”
Mind 59 (236): 433–60.
https://doi.org/10.1093/mind/LIX.236.433.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” In Advances in Neural
Information Processing Systems, 30:5998–6008.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2018.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.” Harvard Journal of Law
& Technology 31 (2): 841–87.
https://arxiv.org/abs/1711.00399.
Wang, Xiaosong, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M. Summers. 2017.
“ChestX-Ray8: Hospital-Scale Chest x-Ray
Database and Benchmarks on Weakly-Supervised Classification and
Localization of Common Thorax Diseases.” In
2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2097–2106. IEEE.
https://doi.org/10.1109/CVPR.2017.369.
Weiskopf, Nicole Gray, and Chunhua Weng. 2013.
“Methods and
Dimensions of Electronic Health Record Data Quality Assessment: Enabling
Reuse for Clinical Research.” Journal of the American Medical
Informatics Association 20 (1): 144–51.
https://doi.org/10.1136/amiajnl-2011-000681.
Whitelaw, Sera, Mamas A Mamas, Eric Topol, and Harriette GC Van Spall.
2020.
“Applications of Digital Technology in COVID-19 Pandemic
Planning and Response.” The Lancet Digital Health 2 (8):
e435–40.
https://doi.org/10.1016/S2589-7500(20)30142-4.
Wilson, Peter WF, Ralph B D’Agostino, Daniel Levy, Albert M Belanger,
Halit Silbershatz, and William B Kannel. 1998.
“Prediction of
Coronary Heart Disease Using Risk Factor Categories.”
Circulation 97 (18): 1837–47.
https://doi.org/10.1161/01.CIR.97.18.1837.
Wong, Andrew, Erkin Otles, John P Donnelly, Andrew Krumm, Jeffrey
McCullough, Olivia DeTroyer-Cooley, Justin Pestrue, et al. 2021.
“External Validation of a Widely Implemented Proprietary Sepsis
Prediction Model in Hospitalized Patients.” JAMA Internal
Medicine 181 (8): 1065–70.
https://doi.org/10.1001/jamainternmed.2021.2626.
World Health Organization. 2021.
“Infodemic Management: An
Overview of Infodemic Management During COVID-19.” https://www.who.int/publications/i/item/9789240035270.
Yao, Shunyu, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2023.
“ReAct: Synergizing Reasoning and
Acting in Language Models.” In
International Conference on
Learning Representations.
https://arxiv.org/abs/2210.03629.
Yu, Victor L., Bruce G. Buchanan, Edward H. Shortliffe, Sharon M.
Wraith, Randall Davis, A. Carlisle Scott, and Stanley N. Cohen. 1979.
“Antimicrobial Selection by a Computer: A Blinded Evaluation by
Infectious Disease Experts.” JAMA 242 (12): 1279–82.
https://doi.org/10.1001/jama.1979.03300120033018.
Yu, Victor L., Lawrence M. Fagan, Sharon M. Wraith, William J. Clancey,
A. Carlisle Scott, John Hannigan, et al. 1979.
“Evaluating the
Performance of a Computer-Based Consultant.” Computer
Programs in Biomedicine 9 (1): 95–102.
https://doi.org/10.1016/0010-4809(79)90015-4.